
Phương pháp viết phương trình tiếp tuyến của đồ thị hàm số
1. Kiến thức cần nhớ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\). Khi đó:
- Hệ số góc của tiếp tuyến tại điểm \({x_0}\) là:
- Phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
2. Một số dạng toán thường gặp
Dạng 1: Tiếp tuyến tại điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Cho hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\).
Phương pháp:
- Bước 1: Tính đạo hàm \(f'\left( x \right)\) và tìm hệ số góc của tiếp tuyến \(k = f'\left( {{x_0}} \right)\).
- Bước 2: Viết phương trình tiếp tuyến tại \(M\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Dạng 2: Tiếp tuyến có hệ số góc \(k\) cho trước.
Phương pháp:
- Bước 1: Gọi \(\left( \Delta \right)\) là tiếp tuyến cần tìm có hệ số góc \(k\).
- Bước 2: Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Khi đó \({x_0}\) thỏa mãn \(f'\left( {{x_0}} \right) = k\).
- Bước 3: Giải phương trình trên tìm \({x_0} \Rightarrow {y_0} = f\left( {{x_0}} \right)\).
- Bước 4: Phương trình tiếp tuyến cần tìm là: \(y = k\left( {x - {x_0}} \right) + {y_0}\).
Dạng 3: Tiếp tuyến đi qua một điểm.
Cho đồ thị hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(A\left( {a;b} \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) biết tiếp tuyến đi qua \(A\).
Phương pháp:
- Bước 1: Gọi \(\Delta \) là đường thẳng qua \(A\) và có hệ số góc \(k\). Khi đó \(\Delta :y = k\left( {x - a} \right) + b\)
- Bước 2: Để \(\Delta \) là tiếp tuyến của \(\left( C \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = k\left( {x - a} \right) + b\\f'\left( x \right) = k\end{array} \right.\) có nghiệm.
- Bước 3: Giải hệ phương trình trên tìm \(k\), thay vào ta được phương trình tiếp tuyến cần tìm.
Có thể bạn quan tâm:
Tài liệu




