Sử dụng phương pháp tích phân từng phần để tính tích phân

1. Kiến thức cần nhớ

Công thức tích phân từng phần:

Ví dụ: Tính tích phân $I = \int\limits_1^2 {\ln tdt} .$

Giải: Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dt}}{t}\\v = t\end{array} \right.$.

Khi đó $I = t\ln t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_1^2 {dt}  = t\ln t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = 2\ln 2 - 1.$

2. Một số bài toán thường áp dụng phương pháp tích phân từng phần

Dạng 1: Tích phân có chứa hàm số logarit.

Tính tích phân \(\int\limits_m^n {f\left( x \right)\ln \left( {ax + b} \right)dx} \)  (trong đó \(f\left( x \right)\) là hàm số đa thức)

Phương pháp:

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = \ln \left( {ax + b} \right)\\dv = f\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{a}{{ {ax + b} }}dx\\v = \int {f\left( x \right)dx} \end{array} \right.\)

- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\ln \left( {ax + b} \right)dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)

Ví dụ: Tính tích phân $I = \int\limits_1^e {x\ln x{\rm{d}}x.} $

Giải: Đặt $\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{x}\\v = \dfrac{{{x^2}}}{2}\end{array} \right.$

Khi đó $I = \dfrac{{{x^2}\ln x}}{2}\left| \begin{array}{l}^e\\_1\end{array} \right. - \dfrac{1}{2}\int\limits_1^e x  = \dfrac{{{e^2}}}{2} - \dfrac{{{x^2}}}{4}\left| \begin{array}{l}^e\\_1\end{array} \right. = \dfrac{{{e^2} + 1}}{4}$

Dạng 2: Tích phân có chứa hàm số mũ.

Tính tích phân \(\int\limits_m^n {f\left( x \right){e^{ax + b}}dx} \). (trong đó \(f\left( x \right)\) là hàm số đa thức)

Phương pháp:

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = {e^{ax + b}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}{e^{ax + b}}\end{array} \right.\)

- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right){e^{ax + b}}dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)

Ví dụ: Tính \(I = \int\limits_0^1 {\left( {2x + 3} \right){e^x}{\rm{d}}x} \)

Giải: Đặt $\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = {e^x}\end{array} \right.$

Khi đó $I = \left. {\left( {2x + 3} \right){e^x}} \right|_0^1 - \int\limits_0^1 {2{e^x}dx}  = \left. {\left( {2x + 3} \right){e^x}} \right|_0^1 - \left. {2{e^x}} \right|_0^1 = 3e - 1.$

Dạng 3: Tích phân có chứa hàm số lượng giác và hàm đa thức.

Tính tích phân \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} \). (trong đó \(f\left( x \right)\) là hàm số đa thức)

Phương pháp:

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v =  - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)

- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)

Ví dụ: Tính tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {x\sin 2x{\rm{d}}x} $

Giải: Đặt $\left\{ \begin{array}{l}u = x\\dv = \sin 2xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \dfrac{{\cos 2x}}{2}\end{array} \right..$

Khi đó $I =  - \dfrac{{x\cos 2x}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. + \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx}  =  - \dfrac{{x\cos 2x}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. + \dfrac{{\sin 2x}}{4}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. = \dfrac{1}{4}.$

Dạng 4: Tích phân có chứa hàm số lượng giác và hàm số mũ.

Tính tích phân \(\int\limits_m^n {{e^{ax + b}}\sin \left( {cx + d} \right)dx} \) hoặc \(\int\limits_m^n {{e^{ax + b}}\cos \left( {cx + d} \right)dx} \).

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = {e^{ax + b}}\\dv = \sin \left( {cx + d} \right)dx\end{array} \right.\)  hoặc \(\left\{ \begin{array}{l}u = {e^{ax + b}}\\dv = \cos \left( {cx + d} \right)dx\end{array} \right.\)

- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {udv}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)

Ví dụ: Tính $K = \int\limits_0^\pi  {{e^x}\cos 2x{\rm{d}}x} $

Giải: Đặt $\left\{ \begin{array}{l}u = \cos 2x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du =  - 2\sin 2xdx\\v = {e^x}\end{array} \right.$

Suy ra $K = \left( {{e^x}\cos 2x} \right)\left| {\begin{array}{*{20}{c}}{^\pi }\\{_0}\end{array}} \right. + 2\int\limits_0^\pi  {{e^x}\sin 2xdx}  = {e^\pi } - 1 + 2M$

Tính $M = \int\limits_0^\pi  {{e^x}\sin 2xdx} $

Ta đặt $\left\{ \begin{array}{l}{u_1} = \sin 2x\\d{v_1} = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}d{u_1} = 2\cos 2x\\{v_1} = {e^x}\end{array} \right.$

Suy ra $M = \left( {{e^x}\sin 2x} \right)\left| {\begin{array}{*{20}{c}}{^\pi }\\{_0}\end{array}} \right. - 2\int\limits_0^\pi  {{e^x}\cos 2x}  =  - 2K$

Khi đó $K = {e^\pi } - 1 + 2\left( { - 2K} \right) \Leftrightarrow 5K = {e^\pi } - 1 \Leftrightarrow K = \dfrac{{{e^\pi } - 1}}{5}$

Đồng ý sử dụng cookie

Chúng tôi sử dụng cookie để cá nhân hóa và cải thiện trải nghiệm của bạn trên trang web của chúng tôi cũng như để cung cấp cho bạn các quảng cáo có liên quan. Để biết thêm thông tin, hãy nhấp vào 'Tìm hiểu thêm' để kiểm tra các phương pháp thu thập dữ liệu của chúng tôi.

Để biết thêm thông tin, hãy nhấp vào 'Tìm hiểu thêm' để kiểm tra các phương pháp thu thập dữ liệu của chúng tôi.